Generalized Keller-Segel models of chemotaxis. Analogy with nonlinear mean field Fokker-Planck equations
نویسنده
چکیده
We consider a generalized class of Keller-Segel models describing the chemo-taxis of biological populations (bacteria, amoebae, endothelial cells, social insects ,...). We show the analogy with nonlinear mean field Fokker-Planck equations and generalized thermodynamics. As an illustration, we introduce a new model of chemotaxis incorporating both effects of anomalous diffusion and exclusion principle (volume filling). We also discuss the analogy between biological populations described by the Keller-Segel model and self-gravitating Brownian particles described by the Smoluchowski-Poisson system.
منابع مشابه
Nonlinear mean field Fokker-Planck equations. Application to the chemotaxis of biological populations
We study a general class of nonlinear mean field Fokker-Planck equations in relation with an effective generalized thermodynamical formalism. We show that these equations describe several physical systems such as: chemotaxis of bacterial populations, Bose-Einstein condensation in the canonical ensemble, porous media, generalized Cahn-Hilliard equations, Kuramoto model, BMF model, Burgers equati...
متن کاملKinetic and hydrodynamic models of chemotactic aggregation
We derive general kinetic and hydrodynamic models of chemotactic aggregation that describe certain features of the morphogenesis of biological colonies (like bacteria, amoebae, endothelial cells or social insects). Starting from a stochastic model defined in terms of N coupled Langevin equations, we derive a nonlinear mean field Fokker-Planck equation governing the evolution of the distribution...
متن کاملBlow up of solutions to generalized Keller–Segel model
The existence and nonexistence of global in time solutions is studied for a class of equations generalizing the chemotaxis model of Keller and Segel. These equations involve Lévy diffusion operators and general potential type nonlinear terms.
متن کاملGeneral properties of nonlinear mean field Fokker-Planck equations
Recently, several authors have tried to extend the usual concepts of thermodynamics and kinetic theory in order to deal with distributions that can be non-Boltzmannian. For dissipative systems described by the canonical ensemble, this leads to the notion of nonlinear Fokker-Planck equation (T.D. Frank, Non Linear Fokker-Planck Equations, Springer, Berlin, 2005). In this paper, we review general...
متن کاملGeneralized thermodynamics and Fokker-Planck equations: applications to stellar dynamics and two-dimensional turbulence.
We introduce a class of generalized Fokker-Planck equations that conserve energy and mass and increase a generalized entropy functional until a maximum entropy state is reached. Nonlinear Fokker-Planck equations associated with Tsallis entropies are a special case of these equations. Applications of these results to stellar dynamics and vortex dynamics are proposed. Our prime result is a relaxa...
متن کامل